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Abstract. A local index theoremfor families of a-operatorson Riemannsurfaces
with puncturesis proved.A new Kdhler metric on themoduli spaceof punctured
surfacesis describedin termsof theEisenstein- Maassseries.

0. The well-known papers by Quillen [I] and Belavin - Knizhnik [2] first

revealedan important role of functional determinantsin the context of the
Atiyah - Singer index theoremfor families.Namely, for families of a-operators
on compact Riemannsurfacesthey evaluatedexplicitly the curvatureform of

the so-calledQuillen’s metric in the determinantline bundle,obtainedby mul-
tiplying the ordinary L

2-metric by det a”~(the determinantof the correspond-
ing Laplace operator). In the simplest caseof ~-operatorsacting on functions
onehasthe following formula:

- detL~ V’T
(I) ~Thlog = w~.

detlmr 6ir

Here L\ is the Laplaceoperatorcorrespondingto the Poincarémetric on a
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compactRiemannsurfaceX, r is the period matrix for X (both det i~and det

Im r are consideredlocally as functions on the moduli space Qig of compact
Riemannsurfacesof genus g ~ 2), a and a are the componentsof the exterior

derivative operator on Q/g~and, finally, WhIP is the symplectic form of the
Weil - Peterssonmetric on Q1g~An “elementary’ proof of this formula one can
find in [3].

In this paperwe tried to extendthe ideasof [1, 2] to the caseof noncompact
Kiemannsurfacesas well. Unfortunately, the Laplaceoperatorhas then a conti-
nuousspectrum,and there is no conventionaldefinition of determinantin this

situation.Here, as in [3], by det i~we understandthe value Z’(l), where Z(s)

is the Selbergzeta function for the correspondingRiemannsurface(it is known
that for compactRiemannsurfacesZ ‘(1) coincides,up to a constantdepending
only on g, with det~defined, as usual.by meansof the operatorzeta func-

tion). Using an approachsimjlar to [3. 4] we are able to derive an analog of
formula (I) for the moduli spaceof Riemann surfaceswith punctures,which
differs from (1) by an additional term; see formula (12) at theendof the paper.
This new term is the symplectic form of a Kãhler metric on the moduli space

definedby meansof the Eisenstein- Maassseries.We also show that this Kähler
metric does not in general coincide with the Weil - Peterssonmetric. In the

languageof physics one can say that puncturesgive an additional contribution
to the so-called“holomorphicanomaly”(cf. [2]).

With a great pleasureand sincerefeelingswe dedicatethis paperto I. M. Gel-

land on the occasionof his 75thbirthday. We hopethat the topicsof our paper
lie within the scopeof his mathematicalinterestsandremind him of the good

old daysof “Representationtheoryandautomorphicfunctions’ 15].

1. First we will remind basicfacts aboutautomorphicfunctionsand spectral
propertiesof the Laplaceoperatoron noncompactKiemannsurfaces;for further

detailsand proofs, see,e.g., [5-7].

Let X bea Rieniannsurfaceof type (g, n), i.e. X = X \{x i,..., x}, where
X is a compactRiemann surfaceof genus g and x1 ,...,x are.pairwise
distinct pointson X. In additionwe will assumethat 2g + n ~ 3. In this case
X canberepresentedas a quotient I’ \H of the upperhalf-plane

H = {z = x + VTT v E ~ v > 0 by theactionof a torsion-freefinitely genera-
ted Fuchsiangroup F. Ihe group F C PSL(2, 1K) is generatedby 2g hyper-
bolic transformations A1, B1 Ag~Bg and n parabolictransformations
S1 S,, satisfyingthesinglerelationA1 B1 A1~1 B~~ . . . Ag Bg A~1 B~~

S1 . . Sn = 1. The fixed points of the parabolicelements S1, . . . , S,~(cusps)
will be denoted by z1 Zn respectively. The “images” of the cusps

z1,. . . , z,~� 1K U {oo } under the projection map H —~ F \ ii X are the
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puncturesx1, . . . , x,~E X. For each i = 1, . . . , n denoteby I’. thecyclic

subgroupin F generatedby S1 and choosean element 6. EPSL(2, IR) such
that

1 ±1
6.oo=z. and 6.’S.6.=

1 1 I Il 0 1

A smooth complex valued function f on H is called an automorphicform

of weight 21, l E 74 with respectto the group r if f(yz) 7’(z)
1 = f(z) for

all y E F and z E H (forms of weight 21 correspondto i-differentialson the
Riemannsurface X F \ H). A holomorphicautomorphicform f is called

regular if at eachcusp z, it hasthe following Fourierexpansion:

f(62) 6
1(z)

1= ~ a~’~e2~\‘~kz i = I,... , n.

If, moreover, a~’~= . . . = = 0, f is called a cuspform. Denote by

~ (F) the linear spaceof cuspforms of weight 2l for the group F; by Rie-
mann-Roch

0, i~0,

dirn~2
1(F)= g, 1=1,

(2/—I )g+(l—l)n, l~2.

Now we will turn to the spectralpropertiesof the Laplaceoperator on the

Riemannsurface X F \ H. Let p(z) dz 2 = ~ 2 (dx
2 + dy2) bethePoin-

caremetric on H. Denote by)r (F) the 1-lilbert spaceof measurablecomplex
valuedfunctionson X F \H with respectto the scalarproduct

(f1~f2)=ff1f;p=

ix

I dxdy
= ~ f1(z)f2(z) 2 f1,f2E)t°(F).1F\H

The correspondingLaplaceoperator

a2 a2 a2
~_4))2 ~ __~

azaz ax2 a)2

is self-adjoint and non-negativein the space.~°(F). Denoteby G~the resolvent
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(A + s(s — l)) 1 of the LaplaceoperatorA in ~r(F). For Res> 1 and z

-y E F, its kernel G
5(z, z’) is givenby theabsolutelyconvergentseries

G5(z, z’) = ~ Q5(z, ‘yz’),
F

where Q5(Z, z’) is the resolventkernel of the Laplaceoperator A on the upper
half-plane H. The kernel Q5(z, z’) is smoothfor z ~z’ and is holomorphic
in s on the whole complex s-plane. It also has an importantproperty that

Q5(6z, 6z’) = Q(z, z’) for any 6 E PSL(2,1K) and z, z’ EH. At s = 1 onehas

1 z—z’
Q, (z, z’) = — — log

27r Z—Z’

The kernel G5(z, z’) with z ~ ‘yz’, ‘y E F, admits anieromorphiccontinuation

in s to the entire complex planeand has the following Laurent expansionat
s= 1:

G~(Z,Z’).= . +G?(z,z’)+O(s— I)

4~(g — I + n) s(s — 1) —

(see [7, Th. 2.3]). The kernel G~(z,z’) is called the Green function of the

LaplaceoperatorA on the RiemannsurfaceX F \H.

Side by side with functions, we will also considertensorsof type (1, rn) on
Riemannsurfaces.On the upperhalf-plane H theyare representedby automor-
phic forms of weight (2/, 2ns), i.e.by functionssatisfying the following transfor-

mationlaw:

f(z)(’(z)ly’(Z)m =f(z), -1EF, zEH.

By ..W’~m(F) we will denote the Hilbert spaceof such forms with respect

to the scalarproduct

(2) (f1f2)=f f1(z)f~(z)iul+
2m_2 dxdj’, f

1,f2 E~im(F)•

r \H

Elementsof the space..~r 1 1 (F) are usually called Beltrami differentials.

2. Now let us proceed with necessaryfacts from the theory of Teichmuller

spaces. Let Tg ,~ be theTeichmüllerspaceof markedRiemannsurfacesof genus

g with ii punctures(we identify it with the TeichmOllerspaceof the marked
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Fuchsian group F uniformizing the Riemannsurface X). The TeichmUller
space Tg~ admits a natural complex manifold structure of dimension

3g — 3 + n. For its descriptionconsiderin the Hilbert space )r_ 1,1(F) the
subspace ~— ~(F) of harmonic Beltrami differentials; each element

Ii E~7_1,1(F)nasatorm ~=y
2~pE.~Z

2(F), so dim ~Z11(F)=3g -3 +n.
The space ~2 1 1 (F) is naturally isomorphic to the tangentspace T1~I Tg~

to the TeichmUller space Tgn at the point [X] representingthe (marked)
Riemannsurface X. In turn, the cotangentspace T~1~Tg~ canbeidentified
with the space ~22(F), which is dual to fl~~11(F) with respectto the pairing

(p,~) f p~, pE~11(F), ~E~2(F).

ix

Forevery 1AEfl_1,1(F) with

IH~II =sup

z EH

there exists a unique diffeomorphism fP : H -+ H satisfyingthe Beltrami
equation

af~
— =p—
az az

and fixing the points 0, l,oo.

Set F ~ = f’~F(f~) and X ~ = F ~A \ H. Choosea basis ~1’~••’ - 3+ n

in the linearspace f1~11(F) and let ~i = c~~ + . . + ~ -3+n ~3g-3+n~

Then the correspondence(e’, E3g — 3 +~) ~ [XM] definescomplexcoordi-

natesin a neighbourhoodof the point [X] E Tg~• They are calledthe Bers

coordinates.In the overlappingneighbourhoodsof two points [X] and [XM]
the Bers coordinatestransform complex analytically. The differential of this
coordinatechange at the point [XI E Tg~ is a linear map D,~: ~2 1 ,1 (F) -+

—~ ~. ~ With the Bers coordinates (e 63g_3+fl) in aneighbour-
hood of the point [X] E Tg~onecanassociate3g — 3 + n vectorfields a/a�1.
At any otherpoint [X’s], p E ~. I (F), in this neighbourhoodthey arerepre-

sented by the Beltrami differentials Dp1 E fl I (FIA), i = 1 3g — 3 + n.
Furtherdetailscanbe found in [8. 9].

Due to the isomorphism T~,I Tg~ ~2 11(F), the scalarproduct (2)
defines a Hermitian metriconthe TeichmUller space Tg~~which is calledthe
Weil-Peterssonmetric. This metric is Kähler [8], and its symplectic form will

be denotedby w1~~
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w~~(p,ii) = (ii, Ij’).

3. Here we will collect necessaryvariational formulas connectedwith Teich-

muller spaces.First considera smooth family w~E ‘~,m (F~) of tensors
of type (l, in), where p E ~ (F) and e E if is sufficiently small. Set

I m
f,~eM(w�)=w�of�P

az az

The Lie derivative of the family w~ in the tangentaldirection p E ~_ ,~ (F)

is

a
L w=— f~(wE)E~*~1(F);
~ a�

similarly,

a
— f:P(wE)E~,m(F).
3�

For the density of the Poincaré metric p(z) = ,~_ 2 regardedas a family

of tensor~of type (1, 1), Ahlfors provedin [8] the following formula:

(3) L,~p=L~.p=0.

For another important family p”’ = DEr!J E ~ 1,1 (F~’), where
onehas

ai a
(4) L—p=—4_(~2 —(A+2)’(p~)

V ay~ ai

(see [9, Th. 2.9].)
Laterwe will needthe following

LEMMA 1. Set f~= (A + 2) (pil) E )~(F), where p, i.’ E &2 1 1(F). The,,
neareach CU5~ ~, i = 1, n, of the group F

c
f,,~(b1z) = —~-~- + exponentiallj’decreasingterms as y -+ cc,

• where ~ is a constant not depending on z EH.

Proof Since p, v E &2 11(F), one has ji = y
2~,v = ~,2 ~ for some cusp



THE SELBERG ZETA FUNCTION ETC. 557

forms p, i~E ~2 (F), and hencethe function j.W E )~°(F)is exponentially

decreasingat the cusps z
1, . . . , z,~.Let

f~(61z)=~ a(y)e2T~

be the Fourier expansionof the function f,~at the cusp z~, i = 1 n.

Because(A+2)f~=jii7, eachfunction

d
2a~’~ 2

—‘i + 4ir2k2— a~1~2 2 kdy y

is exponentiallydecreasingas y -÷ oo. The equation

d2a 2
— + 4ir2k2—— a=0
dy2 y2

has a pair of linearly independentsolutions I /y, y2 when k = 0, and

V’17K
312(27r1 k!y)’-’ e_~hhikIY, \‘~I3/2(2~IkJy)_~e

21nIlrLY

when k ~ 0. Since .cr E ~°(F), increasingsolutionscannotoccurin t~heFourier

expansionof ~ andwe immediatelyarrive at thearsertionof thelemma. •

The Lie derivativeof a family of linear operators
~ ~m~U~EM) isdefinedbytheformula

LA = ~e0 (fAe(f~)_l);

LMA is a linear operator from ~~~“i,m(F)to )r,m(F). For the family.of the

LaplaceoperatorsA onecan~asiIyderivea formula

a a
(5) L A=4y2 —p —

j2 3z 3z

where ii E~2,
11(F) (see,e.g.,[4]).

4. Now we will busy ourselveswith abeliandifferentialsand classicalkernels
on Riemannsurfaces. Let X F \ H be a markedRiemannsurfaceof type

(g, mi) and let •w1,..., Wg be the normalize~basisof the linear space &2~(F),
i.e.
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J w
1(z)dz=611, i,j=1

z

where is the Kronecker symbol. The periodmatrix r = (r11) of Xdefined

by

z

= J w1(z) dz,

z

has a symmetricpositivedefinite imaginary part Im r = (Im r11) with the pro-

perty

1mr11= f w~(z)w1(z)dxdy, i,j= I g.

\H

Moreover, for every i.z E ~‘l_1,1(F) and i = I g onehas L..w1 = 0

(see [10]). The first derivativesof the periodmatrix with respectto coordinates
on the TeichmUllerspace Tg~are givenby Rauch’sformulas[11]:

= — 2 ~ f w~ p, L~r11 = 0,

r \H

pE~211(F), i,j=l g.

This immediatelyyields

(6) L~(logdet Im r) = tr ((Im r) 1 L,~(Imr)) =

=_f
F\H i,j=1

In other words, the (1, 0)-form 3 log det Im ‘r on the Teichmüller space

T5~ correspondsunder the isomorphism Tf’~x1T5~ &22(F) to the family
of cusp forms

— ~ (Imr)~
1 w~w

1.
i,i= 1

For a marked Riemann surface X F \ H denote by B(z, z’) the uniquely

determinedsymmetricbidifferential of the secondkind on Xx X with a double
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pole of biresidue 1 at the diagonal z = Z’ andzero A-periods;its B-periods

are givenby

1B1zJ B(z,z’)dz=27rV’~TW1(z’),

z

(see [7, p. 160]). It is clear that L~B = 0 for any p E ~ 1,1(F) (because

L~B is a regularbidifferential on x Y with zero periods).
The Schiffer kernel ~2(z, z’) is definedas a symmetricbidifferential of the

secondkind on X x X with a double pole of biresidue 1 at the diagonal z =

and the property

v.p. ~(z, Z’) w(z’)dx’ dy’ = 0

I r

for every w E ~ (F). The Schifferkerneldoesnotdependon a marking of X.

Moreover, the following formulashold:

(7) ~2(z, z’) = B(z, z’) — ~r (Im r)~’ w1(z) w1(z’)

1,1= 1

and

(8) ~‘Z(z,z’)=—4ir G? (z,z’)=—4lrlim — G~(z,z’)
8z 3z’ s—’ 1 3z3z’

(see[7, p. 161].

5. The Selbergzeta function Z(s) of a Riemannsurface X is definedfor
Res> 1 by the absolutelyconvergentproduct

Z(s) = fl fl (1 — e’~’~),

{1} k=0

where l runsover the set of all simple closedgeodesicson X F \H supplied
with the Poincarémetric, and is the length of a geodesic l. Thefunction

Z(s) has a meromorphic continuation to the entire complex s-plane with a
simplezero at s = 1. For the logarithmic derivativeof Z(s) onehas

1 d
(9) — IogZ(s)=

2s—l ds
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dxdy

(9) = / ~j Q
5(~, -yz)

iF\H ~ . y
~hyperbolic

where the sum is takenover all hyperbolicelementsof the group F. The last
formula can be easily deducedfrom the definition of Z(s) with thehelpof the
Selberg transform. Further detailsconcerningthe Selbergzeta function can be

found in [12].

THEOREM l.Forevery pE&211(F)

L~IogZ’(I)=—4 RJDp

IL’ \H

where

— (G?(z,z’)_Qi(z,z’))
3z 3z’

and D denotesthediagonal z = z’ in H x H.

Proof As it follows from the properties of the Green function G?(z, z’)

(see [7, Th. 2.3]), R I D is a regular holomorphic automorphic form of weight

4 for the group F, and the integral in the right hand side of the above formula

is convergentbecauseof p E fZ (F).

Further,since Z(s) hasa simplezero at s = 1, we have

L logZ’(l)=lim L log Z(s).

~2

Differentiating now both sidesof formula (9) and taking (3) into account,

we obtain that for Res> I

(10) 2s—l L~~ 1o~Z(s)) f L(~ Q(z,

~vhypetholic

= f (LG5(z z’) —LQ5(z,z’) — LQ5(z,

F\H ~E1’
~y parabolic

dx dy
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where

a’
—I Q(f�P(Z)fEM(Z’))

3d

and

a’
L G (z, z’) = —I G�M(fEP(z), f~’(z’))

u S

(G;M stands for the resolventof the Laplaceoperatoron the Riemannsurface
Xe” F6’~\ H). Denote by G~’~(z,Z’) the resolventkernelof the Laplace

operatoron the Riemannsurface F. \ H; for Res> 1

G~1~(z, Z’) = ~ Q
5(r, 7z’), i = 1,..., n.

~‘E F7

From tile definition of the resolventandformula (5) for L A it follows that

,,dx dy

LQ5(Z, z’) = —v.p. f Q,(z, z”)(L~A)”Q5(z”,z’) 2 =

-“H

~= z” Q,(z, Z”) — Q(z”, Z’) dx” dy”, z*z’,)f

,,

dx dy
L G,

0~(z,Z’) = — v.p. f G~’~(z,z”) (LA)” G~(z”,z’) =

r

a a
I, ~‘I

= 4 p(z ) — G~’~(r,z”) — G~’~(z”,Z’)dx dy

frf\H 3z”

Z~7Z’, 7EF~,

and

dx a),
I, ______________

L~G,(z, Z’) = —v.p. ( G
5(z, z”)(L~A)” G5(z , z ) 2 =

iJ’\H y

4 a a
= I p(Z ) — G (z, z”) — G (z”, z’)dx”dy”,

I II S ~ SI F\H
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Z~=7Z’, ‘yE F,

where (LM A)” meansthat the differential operator L~A actsin thevariable

z”. Using now the above expressionsfor L Q5, L ~ LG5 and a simple

formula

E Q~(z,‘yz’) =~ r
~ parabolic

= ~ (G~(6z, 6z’) — Q,(z, z’)),
1=1 6Er~\r

we derivefrom (10) thefollowing formula:

1 d
____ — logZ(s) =

2s—l ~ ds

= f p(z)dx dy (f G5(z,z”) G5(z”, z’)

F\H Z—~ r\H

dx” dy” I dx”dy”

— ‘H Q,(z,z”) Q5(z”, z’) ,~. “2 —

,,r dxdl’

— / G~~~(öz,öz”) G~’~(6z”,6z’) —
i= 1 LEF1\i’ iF1\F’

I dx”dy”
— J Q8(z, z”) Q,(z”, z’) “2 =

.3,
H

4 1 ~2 d

= I p(z) dx dy — G (z, z’) —

l—2s ) 3z3z’ ds ~
r\H ZZ

— Q,(z, z’) — ~ (G~(&, öz’) — Q5(z,
i=I
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4 d ç
= ____ — I (G,(z,z’)—Q,(z,z’)—

l—2s ds /

‘F\H

— Q~(z,yz’)~~~p(z)dxdy, Reg> 1
7E F
~ parabolk

(here, after reversing the order of integration, we applied Hilbert’s identity
to the resolventkernels).Integrationof the last formula in s over the interval
[a,b]CJR,l<a<b, yields

L~,logZ(s)~~=

=—4 I G(z~z’)—Q(z,z’)---J 3Z3Z’ S

I’ \H

— Q~(z,7Z’))~~~ p(z)dxdyl~.

7E F
-yparabolic

In thelimitas a—~’land b-+oo weget

(11) L,, logZ’(I)=—4 I 3z3Z’ (G1(z,z’)— Q1(z,z’))I,
IF

p(z)dxdy ÷4f E ~ Q1(z, ‘yZ’)~5, ~ p(z)dxdy.

r\H F-yparabolic

becauseL log Z(s) —~ 0 and
5-”-

a ~ Q5(z, ‘yz’) -÷0
Z Z z=z

-,hyperbolzc

uniformly in ZEH.

In order to complete the proof it remainsto show that the secondintegral

in theright handsideof (1 l)vanishesfor every p E ~2 ~ (F). We have

a ~ ,Q1(z, ‘yz’) ~‘=~ =

7EF, Z Z
~vparabolic
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= 2 Q
1(z, 6

1S”6Z’) =

i=I LEF~\F k=1 oz3z z—z

=2 Q
1(61’ öz, 611

i1 &EF~\r k=1 Z Z

I ‘~ (6 ~

=--E~I 2 =
11 LEF.\I’ k=1

=— — ~ (6~’ 6)~(z)2 ~
1=1 ~Er1\r i=1

where

~(z) = ~ (6~1 6)’ (z)2
SE F

is the Einsensteinseriesof weight 4 for the group F associatedwith the cusp

z~,i = I, n. SinceEisensteinseriesare ortogonalto cuspformswith respect
to the Peterssonscalarproduct (2) (see [61)andevery p E ~2 1,1(F) has a form
p = y

2i~, p E &2
2(F), we see that the integral we are interestedin is in fact

equalto zero.

THEOREM 2. For evemy p, vE &2

Z’(l) I
L~L log = —

~ detlmr l2ir

—— ~ f E1(~,2)pi7p,

i=1 r\H

where

E1(z,s) = [ (Im(61 1 öz))
8, Res> 1,

&Er~\F

is theEisenstein-Maassseriesfor thegroup F associatedwith the cusp z~,i = I,
-. ,n.
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Proof As it follows from Theorem 1,

a I
L

1rL IogZ’(l) =—4 — J R
6~’~,.~61’r

e0

=—4 f (Lp(RID).p+RID.LFP).
iF\H

The kernel R is regularat the diagonal D in Hx Ii, therefore L~(RI D~=

= (L~R)ID~ Recallthat

R(z, z’) = (G?(Z, z’) — Q
1 (z, z’),

3z 3z’

andlet usvary the kernels

~2 ~

and
3z 3z’ liz liz’

separately.
Since

3
2Q

1 I
(z, z’) = — ‘2lizliz 4ir(z—z)

a simplecomputationanalogousto that of [4, §4.4] showsthat

3
2Q

1 I
=—y

2P~
~ lizliz’ D 48ir

and

( a2Q
1

4 I L_ .p .— (p,v).
I V lizliz I2ir

Further,

a
2G° 1

! (z,z’)=— —

azaz’ 4ir

where ~1 is the Schiffer kernel on F \ H x F \ H (seeformula (8)). From (6),

(7) it immediatelyfollows that
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I
—41 Lv—

) azaz’
r\H D

= L\H (L(~ B(z,z’) — (Irn T)~1 w~(z)wJz’)))

p(z)dxdy L~L~, logdetlmT —

— f ~(Imr)~w~w.Lp.

r\H

In consequenceof formula (4) the last integralvanishesandwe obtain

— 4 f L~(RI D~ p = L~L log det Im T + ~ v).

F\H

It r~mainsonly to evaluatetheintegral

_4f
Jr \H

(which convergesabsolutely by Lemma 1). Denoteby F the canonicalfunda-
mentaldomainof the group F in H suchthat its cuspsareexactly z

1, . . . 2~~.

Set F~={zEFI Im(61
1z)~Y,i=l,... n}and 1

1=Ffl{zEHIlm(61’z)= Y},

= 1 n. Stokes’ formula together with (4) yield

(
1F\H

2 IdzAdZI

~ (A+2)’ ~ 2 =

2 1 3 lif.
= — lim I RI . — )/2 ~ dzAdf=

./TJFY D
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=2\/~i ~ 5~FY~ dz,

where 8F~ standsfor the boundaryofthe domain F
1’. Due to F-invariance

of the integrand,the boundaryintegral reducesto the sum of integralsover the
horocyclearcs i~,sothat

f
F \H

=2V’Jlim I~1 ~RID.y2_±!dz=

=2~1im RID(&~).(lm6~.

RezE[0,1~
Im z=Y

—f— (6~z) 6 (z) dz
ai

=2V’~TIim y2 RID(6,z)6;(z)2.

i=1 RezELO,1)
Im zY

a
— (f(6

1z)) dz.

Recall now that R I D is a regular automorphicform of weight 4 for the
group F, whoseconstantterm of Fourierexpansionat eachcuspz~is — ir/l2
(by [7, Cor. 3.5] it is equal to thatof the sum

—‘ Q,(z,yz’) ,

azaz 2=2

seealso the computationat the end of the proof of Theorem 1). Substituting
the correspondingFourier seriesfor R I D and ~ f~ (seeLemma1) into

lastformula, we obtainthat
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f
i~

n ~ vT~T
lim y2 — — . — —

i=1 12 2 Y2 ~

On the other hand, from the differential equation AE
1(z, 2) = — 2E1(z, 2y

andGreen’sformulaweget

f
.
1r\H

f
= J (E~(z,2) Af~ — A E

1(z, 2) . f) __~,__ =

r\H

I ~
= lim 1/) E~(z, 2) —a--- dx - —‘f--- d —

Y j lix

a a
— f — E.(z, 2)dx — — E.(z, 2) dy

/.LV I lix ~

The last integral caneasily be evaluatedin termsof Fouriercoefficientsof the
functions f... and E~(z,2). Recall that at the cusp

E1(6.z,2) = 6~1y
2+~y’ +O(e2~~),i,j = I,... ,n.

I

with someconstants (see,e.g.,[7] or [12]), so that

ir\H

n ~
urn ~(6~~v2. (_ _~)_2&~~Y._-~)+oW=3c~
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~nd

_4f RID.Lrp=—— ~c~=

F\Ji • i=1

=—— ~ ( E(~,2)pPp,

i=1 ‘F\H

whichconcludesthe proof.

6. REMARK 1.For X~FV1 and p,vEf2 ,
1(F) set

(p, P)~5p= ~ f E1(. , 2) piTp.
i=1 F\H

Since E1(z, 2}> 0 for any i = I n, the Hermitian form ( , ~ is
positive on the linear space ~7.,, 1(F) TixjTgn~ Moreover,the form(,)~q,
defines a Hermitian metric on the Teichmullerspace Tg~~n > 0, becausethe
Eisenstein-Maassseriesare real analytic with respectto coordinateson Tg~~

As the Weil-Peterssonmetric is Kähler, by Theorem 2 the metric ( ,

on Tg~ is also Kãhler. Denote by ~ its symplectic form; w~,,,(p,~‘) =

=V~i/2 (p, zJ)~~. ThenTheorem2 meansthat

- Z’(l) v~T 2\/~i~
(12) lililog =——-——

detlmr 67r 9 p

where 3 and 3 are the componentsof the exterior derivativeoperator on
Tg ~.

REMARK 2. Since the scalarproduct (p, ~ p, v E ~ 1 1 (F), doesnot
depend on a marking of X F\H, the metric ( , ~ and its symplectic form

~~cusp are defined on the moduli space %gfl of Riemannsurfacesof type
(g, n), ii >0. In general,the closed (I, 1)-forms ~ and ~cusp on allgfl

represent nontrivial linearly independent cohomology classes [wh,j,], ~ E

E H
2 (~‘g,n IR). For instance,when g> 3, n = 1, by Theorem2 wehave

I
— [w~~]— [w~SP]=pr*(c,(XH))�zO

in H2(~1à’g,;1R),
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where is the Hodge line bundle on CWg (see [13]), c
1 (XH) E H

2(‘~1g;Z)

is its Chern class and pr: ~WgI —+ Olig is the naturalprojectionmap (“forgetting
of punctures”). Integrals of the forms and ~ over fibers of Pr:

—~ ~1•/1g(i.e. compact Riemann surface of genus g) are positive, so both

~ and ~ are not proportional to pr*(c
1 (XH)). This proves their

non-triviality as well as linear independence.Besides, [w~~] and • [wcu~ I

form a basisof H
2(Q/g,; IR), because dim H2 (Q1

5 1 IR) = 2 (see[14]).
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