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Abstract. A local index theorem for families of 8-operators on Riemann surfaces
with punctures is proved. A new Kdhler metric on the moduli space of punctured
surfaces is described in terms of the Eisenstein - Maass series.

0. The well-’known papers by Quillen [1} and Belavin - Knizhnik [2] first
revealed an important role of functional determinants in the context of the
Atiyah - Singer index theorem for families. Namely, for families of d-operators
on compact Riemann surfaces they evaluated explicitly the curvature form of
the so-called Quillen’s metric in the determinant line bundle, obtained by mul-
tiplying the ordinary L? -metric by det 3*0 (the determinant of the correspond-
ing Laplace operator). In the simplest case of 9-operators acting on functions
one has the following formula:

det A V=1

) 30 log = w
detIm 7 6w

WP'
Here A is the Laplace operator corresponding to the Poincaré metric on a
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compact Riemann surface X, 7 is the period matrix for X (both det A and det
Im 7 are considered locally as functions on the moduli space %g of compact
Riemann surfaces of genus g > 2), d and 8 are the components of the exterior
derivative operator on %g, and, finally, Wy p is the symplectic form of the
Weil - Petersson metric on % g An “elementary” proot of this formula one can
find in [3].

In this paper we tried to extend the ideas of [1, 2] to the case of noncompact
Riemann surfaces as well. Unfortunately, the Laplace operator has then a conti-
nuous spectrum, and there is no conventional definition of determinant in this
situation. Here, as in |3], by det A we understand the value Z'(1), where Z(s)
is the Selberg zeta function for the corresponding Riemann surface (it is known
that for compact Riemann surfaces Z'(1) coincides, up to a constant depending
only on g, with detA defined, as usual. by means of the operator zeta func-
tion). Using an approach similar to [3, 4] we are able to derive an analog of
formula (1) for the moduli space of Riemann surfaces with punctures, which
differs from (1) by an additional term; see formula (12) at the end of the paper.
This new term is the symplectic form of a Kihler metric on the moduli space
defined by means of the Eisenstein - Maass series. We also show that this Kéhler
metric does not in general coincide with the Weil - Petersson metric. In the
language of physics one can say that punctures give an additional contribution
to the so-called “holomorphic anomaly” (cf. | 2]).

With a great pleasure and sincere feelings we dedicate this paper to I. M. Gel-
fand on the occasion of his 75th birthday. We hope that the topics of our paper
lie within the scope of his mathematical interestsand remind him of the good
old days of “Representation theory and automorphic functions” [ 5].

1. First we will remind basic facts about automorphic functions and spectral
properties of the Laplace operator on noncompact Riemann surfaces; for further
details and proofs, see, e.g., [5-7].

Let X be a Riemann surface of type (g, 1), ie. X =X \{xl, o ,xn}, where
X is a compact Riemann surface of genus g and Xy oo X, are. pairwise
distinct points on X. In addition we will assume that 2g 4+ n > 3. In this case
X can be represented as a quotient 1I' \ H of the upper half-plane
H={z=x+ \/——ly S (FI 3 >0} by the action of a torsion-free finitely genera-
ted Fuchsian group I'. the group T' C PSL(2, IR) is gencrated by 2g hyper-

bolic transformations Al, Bl, C e, Ag, Bg and n parabolic transformations
51’ ..., S, satisfying the single relation A1 B1 Al‘1 BII A Ag Bg Ag’1 B;l
Sy, Sn = 1. The tixed points of the parabolic elements Sl, R Sn (cusps)

will be denoted by z;,...,z, respectively. The “images” of the cusps

z ..z, €IRU{eo} under the projection map H—-T\H=X are the

17
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punctures x,, ..., X, € X. Foreach i=1,...,n denote by T, the cyclic
subgroup in I' generated by S, and choose an element 8, €PSL(2, R) such
that

1 1 +1
6i°°=zi and &, Si6i= 0 :

A smooth complex valued function f on H is called an automorphic form
of weight 21, I € Z, with respect to the group I' if f(v2) ¥') = f(z) for
all ye€T and z € H (forms of weight 2/ correspond to [-differentials on the
Riemann surface X = I' \ H). A holomorphic automorphic form f is called
regular if at each cusp z; it has the following Fourier expansion:

oo

[ 8 = ) aPEmV-lki o n

k=0

If, moreover, ag” =...= ag") = 0, f iscalled a cusp form. Denote by
QI (I') the linear space of cusp forms of weight 2/ for the group I'; by Rie-
mann-Roch

o, <0,
dim (") = { & =1,
2I-1)g+{U—-Dn, 122

Now we will turmn to the spectral properties of the Laplace operator on the
Riemann surface X =T \H. Let p(z)|dz| 2 = 3= 2(dx? + dy?) be the Poin-
caré metric on H. Denote by 3 (I') the Hilbert space of measurable complex
valued functions on X = T'\ H with respect to the scalar product

(fyfz)'tf f}f;p=
X

__ dxdy
= / LOLE@ ——.  f.f, EHD).
T\H Y

The corresponding Laplace operator

92 92 92
S
9z 37 x? 3yl

is self-adjoint and non-negative in the space 3 (I"). Denote by G, the resolvent
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(A +s(s — 1)1 of the Laplace operator A in J (I'). For Res> 1 and z #v2',
v €T, itskernel Gs (z, z') is given by the absolutely convergent series

Gz2Y=) Q)
yeT
where Q (z, z') is the resolvent kernel of the Laplace operator A on the upper
half-plane H. The kernel Q (z, z') is smooth for z #z' and is holomorphic

in s on the whole complex s-plane. It also has an important property that
Q,(8z, 8z') = Q.(z, ') forany & €PSL(2,R) and z, z' €H. Ats =1 one has

' 1 z-—2z'
Q,(z,z)=— —log
27

'
zZ—2

The kernel Gs (z, z') with z #vz', vy €T", admits a meromorphic continuation
in s to the entire complex plane and has the following Laurent expansion at
s=1:

1 1
Gz z').= : +6%z 2)+06-1)

H s(s — 1)
477(g71+—2—) s 1

(see [7, Th. 2.3]). The kernel G(l)(z, z') is called the Green function of the
Laplace operator A on the Riemann surface X =T\ H.

Side by side with functions, we will also consider tensors of type (/ m) on
Riemann surfaces. On the upper half-plane H they are represented by automor-
phic forms of weight (2/, 2m), i.e. by functions satisfying the following transfor-

mation law:
fy2) Y @' Y @™ = f@2), y€ET, z €A

By Jfl m(T) we will denote the Hilbert space of such forms with respect
to the scalar product

) <f1,f2>=/ L@ L@y im=2axdy, f. f, €#) ().
'\H

Elements of the space 3 1 1(I’) are usually called Beltrami differentials.

2. Now let us proceed with necessary facts from the theory of Teichmiiller
spaces. Let Tg . be the Teichmiiller space of marked Riemann surfaces of genus
g with »n punctures (we identify it with the Teichmiiller space of the marked
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Fuchsian group I uniformizing the Riemann surface X). The Teichmuller
space Tg’n admits a natural complex manifold structure of dimension
3g — 3 + n. For its description consider in the Hilbert space Jf.1,1(r) the
subspace $2_ 1 ,1(F) of harmonic Beltrami differentials; each element
u e Q_l’l(l’) nas a form u =y2¢, ngSZZ(F), so dim 9_1,1(P) =3g -3 +n.
The space 1.1 (") is naturally isomorphic to the tangent space T[X] Tg_’l
to the Teichmiiller space Tg'n at the point [X] representing the (marked)
Riemann surface X. In turn, the cotangent space T[*X] Tg,n can be identified
with the space £,(I'), which is dual to Q_ 1,1(1") with respect to the pairing

(u,w)=f by, LEQ (), veQ, (D).
X

Forevery p€Q_, (') with

Juf.=sup  |u@)]<1
zeH

there exists a unique diffeomorphism f* : H — H satisfying the Beltrami
equation

asrt of*

0z E

and fixing the points 0, 1, 0.

Set I'* = f*I'(f*)~! and X* =T* \H. Choose a basis p;,...,H3, 3.,
in the linear space Q_l’](l") and let u = € M+ ..+ €3 34n P3g - 34n
Then the correspondence (€, . .., e3g_3+n) = [X#] defines complex coordi-
nates in a neighbourhood of the point [X] € Tg'n. They are called the Bers
coordinates. In the overlapping neighbourhoods of two points [X] and [X*]
the Bers coordinates transform complex analytically. The differential of this
coordinate change at the point [X] € Tg'" is a linear map D# 12 11 -
- Q 1,1(Fy)' With the Bers coordinates (e, . . . e3g_3+n) in a neighbour-
hood of the point [X] € Tg'n one can associate 3g — 3 + n vector fields 9/de;.
At any other point [X*], p € Q2 i1 (I"), in this neighbourhood they are repre-
sented by the Beltrami differentials D,"‘i €EQ_, 1 Tr®y,i=1,...,3g2-3 +n.
Further details can be found in {8, 9].

Due to the isomorphism T, T = 1,1(F)’ the scalar product (2)

(X1 “g.n

defines a Hermitian metricon the Teichmiiller space Tg n which is called the

Weil-Petersson metric. This metric is Kéhler [8], and its symplectic form will

be denoted by Wy ps
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VT

wwp(ﬂsv) = 2_ (K, v).

3. Here we will collect necessary variational formulas connected with Teich-
miiller spaces. First consider a smooth family w?® € .)fl m (I'¢#) of tensors
of type (/, m), where u € Q | (') and e € issufficiently small. Set

afep 1 afep m
flad
oz 0z ’

f:“(we)=weof“‘(

The Lie derivative of the family w® in the tangental direction u€ 82 _, | (I")
is

0
Lw=— fEH(we)E K, (T);
H ae o ’
similarly,
0
Liw= — f,,f“(wf)eg}f}m(r‘).
d¢ le—y '

For the density of the Poincaré metric p(z) = )"2, regarded as a family
of tensors of type (1, 1), Ahlfors proved in [8] the following formula:

(3) Lup=LHp=0.
For another important family p = D _u € 2 | ,(I'Y), where
uvEQN i 1(1"), one has
] ]
4) Lop=—4—\r? — (@ +2) ()
0z Z

(see [9, Th. 2.9].)
Later we will need the following

LEMMA 1. Set f, = (& +2)7 V(up) € HT), where u, v € 2 (D). Then

near each cusp z,i=1,...,n, of the group T
cl)
fy_p_ (8;2) = £ exponentially decreasing terms as y —» oo,

)

‘where ¢t is a constant not depending on z € H.

Proof. Since p,v € | (I'), onehas pu= v2%, v =y for some cusp
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forms ¢, ¥ € Qz (I'), and hence the function wuv € (') is exponentially
decreasing at the cusps z,,...,z,. Let

oo

fx62= ) aPmer

k=— oo

NV —1lkx

be the Fourier expansion of the function pr atthecusp z, i=1,...,n
Because (A + 2)fw7 = uv, each function

d*a® 2y
__’; +(4,,2 K2 — _2) ‘»11(:)
dy Yy

is exponentially decreasing as y — . The equation

d?a 2
R +(41r2 k2 ——2)a=0
dy? y

has a pair of linearly independent solutions 1/y, y* when k=0, and

Vy K

Qu|k|y) ~ e 2m"¥ W iy, Qu|k|y) ~ ekl
32 yoros 32 P> e

when k # 0. Since f“F € JAT), increasing solutions cannot occur in the Fourier
expansion of f# - and we immediately arrive at the assertion of the lemma. =

The Lie derivative of a family of linear operators
A€ A, T > Jf},'m,(f‘ €4} is defined by the formula

0
L A= ——! (fi# A7)
K del _q
e=
L#A is a linear operator from »#,, (') to .}fl. m' (). For the family of the
Laplace operators A one can easily derive a formula
0 ]

) LA=ay? —p
K 3z 9z

where p€Q_, () (see, e.g., [4]).

4, Now we will busy ourselves with abelian differentials and classical kernels
on Riemann surfaces. Let X = I' \ H be a marked Riemann surface of type
(g, n) and let w Cy W, be the normalized basis of the linear space Ql Ty,
i.e.

10 - -
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AiZ
/ w}.(z)dz:éi]., Lj=1,....8

F4

where &i]. is the Kronecker symbol. The period matrix 7 = ('r,.].) of X defined

by
BiZ
Ty =f w].(z) dz,

z

has a symmetric positive definite imaginary part Im 7 = (Im Ti].) with the pro-
perty

Im Tij:f wi(z)w].(z)dx dy, ij=1,....8
r

\H

Moreover, for every u € le 1(I“) and i=1,...,g onehas Lﬁwi =0
(see [10]). The first derivatives of the period matrix with respect to coordinates
on the Teichmiiller space Tg , are given by Rauch’s formulas [11]:

aoif

L1.=—2 V—]] W, W, M, L_71.=0,
"] L
P\H

HEQ M), ij=1,....8
This immediately yields

(6) L, (ogdetIm7)=tr (Am7)~' L, (Am 7)) =

g
=—/ Z (Im'r)i;lwiw].p.
vy =1

In other words, the (1, 0)-form 9 log det Im 7 on the Teichmiiller space

Tg n corresponds under the isomorphism T[*X] Tg,n = 9.2 (T') to the family

of' cusp forms

g
—1
— Z (Im T)i]. w; ;.
=1
For a marked Riemann surface X = I’ \ H denote by B(z, z') the uniquely
determined symmetric bidifferential of the second kind on X x X with a double
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pole of biresidue 1 at the diagonal z = z' and zero A-periods; its B-periods
are given by

Bil
/ Bz, z')dz =21 V—1 w,(2'), i=1,...,8

z

(see [7, p. 160]). It is clear that L‘T B =0 forany nu € S’l-l,l(l‘) (because
LﬁB is a regular bidifferential on X x X with zero periods).

The Schiffer kernel £2(z, z') is defined as a symmetric bidifferential of the
second kind on X x X with a double pole of biresidue 1 at the diagonal z = 2’
and the property

v.p. / Qz, z) w(z)dx' dy'=0
T\H

for every w € Sll (I"). The Schiffer kernel does not depend on a marking of X.
Moreover, the following formulas hold:

g
7) Qi z)=B@E z)—7 .Zl (Im 1')1‘.1.1 w,(2) wi(z’)
ij=
and
62 aZ
(8) Qz z')y=—4n GY(z,z')=—drlim — G,z z)
0z 0z’ s>1 9zoz'

(see [7,p. 161}

5. The Selberg zeta function Z(s) of a Riemann surface X is defined for
Res> 1 by the absolutely convergent product '

zs) =[] ﬁ (1 —e= G+,

{n k=o0

where ! runs over the set of all simple closed geodesics on X = TI' \ H supplied
with the Poincaré metric, and ] I| is the length of a geodesic /. The function
Z(s) has a meromorphic continuation to the entire complex s-plane with a
simple zero at s = 1. For the logarithmic derivative of Z(s) one has

1 d

— log Z(s) =
2s — 1 ds

)



560 L. A. TAKHTAJAN, P. G. ZOGRAF

dx dy
© = Y 0, v2) — .
er
TAH :hyperbolic

where the sum is taken over all hyperbolic elements of the group TI'. The last
formula can be easily deduced from the definition of Z(s) withthe help of the
Selberg transform. Further details concerning the Selberg zeta function can be
found in [12].

THEOREM 1. For every n €8 _, ;I

L“logZ'(])=—4f R|, u
r\H

where
a?_
0z 0z'

Rz, z)= (G?(Z,Z')-QI(Z,Z'))

and D denotes the diagonal z =z' in Hx H.

Proof. “As it follows from the properties of the Green function G(l) (z, z")
(see [7, Th. 2.3}, R | is a regular holomorphic automorphic form of weight
4 for the group I', and the integral in the right hand side of the above formula
is convergent because of u €2 1.1 .

Further, since Z(s) has a simple zero at s = 1, we have

L logZ'(1)=1im L log Z(s).
M s—1 K

Differentiating now both sides of formula (9) and taking (3) into account,
we obtain that for Res > 1

1 d
(10) L, (g logZ(s)) sz, L“(Z 0,(. 72))

dxdy

2
2s — 1 YET )
v hyperbolic

:j (Lst(z, Z)-L,0zz2) - ) LuQs(z,'yz'))
'\H

YEY
~y parabolic

z'=z

dx dy

yro
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where
0
L,0Gz)=— Q@[
de e=0
and
0
LGz 2)=—|  GH(f* @), f@E)
aE e=0

(G:“ stands for the resolvent of the Laplace operator on the Riemann surface
X€¥ =~ '’ \ H). Denote by G:(")(z, z') the resolvent kernel of the Laplace
operator on the Riemann surface T; \ H; for Res> 1

N @ 2Yy=) Q)  i=1,...

7EI‘i

S

From the definition of the resolvent and fdrmula (5) for L” A it follows that

dx " dy "
¥ "

L,0,G.z") =~ »p. / 0,z 2V L,A)"Q, " 2")
H

0 °
=4 ”»(Z") Qs(z, Z") ___' Q(Z",Z')dx" dy", Z#:Z',
o 0z" 9z"

) ) . ) dx"dy"
LM Gi')(z, Zy=—vwp. Gg')(z, z") (L“A) ! G‘E’)(z", z') — =
I \H Y
0 i 9 { "
=4 uiz"y — Gs(')(z, "y —, Gﬁ')(z", zNdx" dy”,
0z" 9z
L'i\H
z#vz', YET,
and
"n ”n ” ' dx i d.)) "
LMG‘(z . z) =—v,p.f G,z 2z )(LMA) G, (2", 2)) i =
P\H

d d
-4 [J.(Z") . G‘,(Z, Z") - G‘(Z", Z')dX" dy",
azn aZ"

'\H
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z#vz', yET,

where (L“ A)" means that the differential operator L, A acts in the variable
z". Using now the above expressions for L, Q. L, Gs("), L,G, and a simple

formula

)3 0,(z yz) =

¥l
v parabolic

_ nz Z (Gs(")(az, 6z') - Q,(z, 2)),

i=1 661‘1.\1“

we derive from (10) the following formula:

1 d
L (—— logZ(s)| =
2s — 1 Flds

; 32
=4 u(z)dx dy
oz 9z’
T\H

(f G,(z, z") Gs(z", z"
2=z \/pr\g

, ) dx”d_y "
~ | Q2. 2)Qz", 2) .

H

dx n dJ n

J7!12

dx " d_\’ "

n
- E 2 ' ( G W (82, 82")G (82", 82")
§ § [»]
serpr \ Y

i=1 N
NG

! dx" dy "
~ [ 02,2 Q,z", 2"y —
H J

d
—_ (Gs(z, z') —
ds

z2'=z

4 02
= u(z)dx dy
1—2s 0z 0z’
T\H

—Qz ) ) Y (6P 52')-Q:(z,2')))

i=1 8E€T;\T
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4 d 32
1 —2s :1'—.9— 0z 0z’
T\H

G,z 2) - Q,(z, 2') -

— Z 0., 72’)*z,=z u(2)dxdy, Res>1

yel
v parabolic

(here, after reversing the order of integration, we applied Hilbert’s identity
to the resolvent kernels). Integration of the last formula in s over the interval
[a, p]CIR, 1 <a<b, yields

L, logZ(s)|3Zb =

a2
=—4 (G,(z, 2) - Q,(z,2') ~
oz 0z’
\H

w(z)dx dy| 5Zb

z'=z

— Z Q,@, 72'))

yer
yparabolic

In thelimitas a—> 1 and b —» oo we get

aZ
(an L logZ'(l)=—4 (G,(z,2Yy= Q,(z, 2N .._
# j 3z dz' ! 1 2=
"\H
aZ
puz)dx dy + 4 Z - 0,(z, v2')|, -, #z)dxdy,
N 0z 9z
v parabolic
because Lp log Z(s) — 0 and
§—+ o 3?2
Y - 0.z, v2)|,... =0
ser 0z 9z P
yhyperbolic

uniformly in z € H.
In order to complete the proof it remains to show that the second integral
in the right hand side of (11)vanishes for every u€Q 11 (I'). We have

2
Z 2 Q,(@z, ")

o=t 0z 9z’
v parabolic

z'=2
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2

z'=1z

0,(z. & 'sk8z")

oz oz’

n oo 32

-2 ) Low k}; —, 0,67 8z 5 82’+k)L,=Z
Ly = (5;'8))

R N B B
4 n . ' ) 7 n

T E i=1 &€Tr AT (6; 6) (Z) T Iz— i=1 @’}(Z),

where

=) (57 ey (@

. 5eI‘,—\F

is the Einsenstein series of weight 4 for the group I' associated with the cusp
z, i =1,..., n Since Eisenstein series are ortogonal to cusp forms with respect
to the Petersson scalar product (2) (see [6]) and every p €82 11 (I') has a form
u=y%p ¢€ Q,(T'), we see that the integral we are interested in is in fact

equal to zero. ]

- THEOREM 2. Forevery p,v€Q_, [ (I')

Z'(D 1
L, (L log ————) = — {u,v)—
H detIm 7 127
id n
-—= Y E(,2)u7p,
P i=1 Uy

where

-1
Efz,s)= ) (Im(;'82)", Res>1,
SET AT
is the Eisenstein-Maass series for the group T associated with the cusp z, 1 = I,

n.

>
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€V « y€? —=
f R | p - u7 =
e=0 Jpevg

=—4 / (LyR| p) w+R|p Ly
T\H )

Proof. As it follows from Theorem 1,

)
Ly L, logZ'(l) =—4 p-

The kernel R is regular at the diagonal D in HxH, therefore L_(R| p)=
=(L;R)| . Recall that

82
Rz z')= —— (G)(z,2) - Q,(, 2),
oz
and let us vary the kernels
2
3’ Q, 3’ GY
and

oz oz’ 9z 0z’

separately.
Since

1

S

(z, z) —
oz 9z’ an(z — z')?

a simple computation analogous to that of [4, §4.4] shows that

92 0 1
[ 22| - Lo
oz 0z’ D 487
and
3’0, 1
4 L __) H= — {(u,v).
0z oz'/ |, 127
T\H
Further,
3?GY 1
(2,2)=— — Qz 2),
0z0z' 47

where £ is the Schiffer kernel on T' \H x I' \ H (see formula (8)). From (6),
(7) it immediately follows that
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92 GY
—4 (LV_ ‘)
dz9z'
T\H

1 g
=f (LV.(— Bz z)- ) (hnr)lglw,.(z)wl.(z')))
T'\H

T ij=1

CM =
D

z'=2

uE)dxdy =L L“ logdetImr —

g

-1

_ / Z (Imr)i]. 0,0, L
r\g =1

In consequence of formula (4) the last integral vanishes and we obtain

1
_4/ Lﬁ(R|D)-y=LﬁL“10gdetImT + 1E{(y,u).
r\H

It rfkmains only to evaluate the integral

~4/ R|p-Lyu
r\H

(which converges absolutely by Lemma 1). Denote by F the canonical funda-

- mental domain of the group I' in H such that its cusps are exactly z,, ..., z,.
Set FY ={z € F[ Im(6l.‘lz)<Y, i=1,... n}and I =F N{z EH] lm(6i’12) =Y}
i=1,...,n Stokes formula together with (4) yield

0 0 >
" | dz A dz|
=4[ Rlp =V —@a+2)! ()| —— =
Z 0z 2
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Y= o L2

of
=2V-1 lim Sé R|, ¥? 2 a4,
oFY

where 8FY stands for the boundary of the domain FY. Due to T-invariance
of the integrand, the boundary integral reduces to the sum of integrals over the
horocycle arcs Ii, so that

/ IelD.LV-y.=
T\H

n of
=2V—1 lim Y~ R|, - ¥? a“” dz =
z

Y oo

i=1 I

n
=2V=T Jim ) R|p(®2)- (m 827 -
=1/ Reze0,1]
Im z=Y

M

of.
po- (8,2 Blf (z) dz
z

n
=2vV-1 1lim ¥? ) R| ,(82)8/(z) -
Y- oo .

=1 JReze[0,1)
Im z=Y

0
* ‘g (f”;(aiz)) dZ.

Recall now that R |, is a regular automorphic form of weight 4 for the
group I', whose constant term of Fourier expansion at each cusp z; is — /12
(by [7, Cor. 3.5] it is equal to that of the sum

3?2
—, 0,z z") E
YeT a1 ozoz' ! 2=z

see also the computation at the end of the proof of Theorem 1). Substituting
the corresponding Fourier series for R | p and 0/0z qu (see Lemma 1) into
last formula, we obtain that
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f Rlp - Lyp=
A

n T V-1 1
=—2V—1 lim Y? Z (— —) ——(_ —)c(i_)+
Y oo =1 12 2 Y2 uv
: ) TN L)
+ O - = - c lﬁ .
(yz) 12 i "
Y oo
On the other hand, from the differential equation AEl.(z, 2) = — 2El.(z, 2)

and Green’s formula we get

/ Ef, 1) up =
T'\H
dx dy

=/ E@ DD, ~DE@2)f,) —— =
y
'\H

af 5 of 5
lim El.(z, 2) dx — dy| —
Yo ay ox
oFY

] 0
~f,, (— Ei(z, 2)ydx — — Ei(z, 2) dy) .
Y \ay dx

The last integral can easily be evaluated in terms of Fourier coefficients of the
functions f‘J and E(z, 2). Recall that at the cusp z;

— 2 4 -1 -2 D
Ei(6].z,2)—6i,.) + ¢, +0( ™), ij=1,...,n

Yoo

with some constants Py (see, e.g.,[7] or [12]), so that

/ E(,2) upp =
I'\H

" ) i)
‘ I LA L = 3c®
lim (6‘.].Y (— = )-25in . )+0(])—3c“ﬁ

- Y— Yo e

=1
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and

Elv

Yt

|
H
o
T
P
~]
II
m|=!

which concludes the proof.

6. REMARK 1.For X =I\H and p,v€Q_, [ (I) set

R

T\H ‘

i=1

Since Ei(z, 2Y>0 forany i=1,...,n the Hermitian form ( ,)m“p is
positive on the linear space $2_, ’I(I‘) o TlX]Tg,". Moreover, the form (, )cmp
defines a Hermitian metric on the Teichmiiller space Tg’", n > 0, because the
Eisenstein-Maass series are real analytic with respect to coordinates on Tg'n

As the Weil-Petersson metric is Kahler, by Theorem 2 the metric ( ,)
on Tg'" is also Kihler. Denote by w

cusp
cusp its symplectic form; wm,p(u, V) =

=V—1/2 {u, V)c,“p. Then Theorem 2 means that
Z'(1) V-l 2V—1n

(12) 393 log =— Wy, 5 + W
detIm 7 6m wr 9 cusp
where @ and 8 are the components of the exterior derivative operator on
Tg’n.
REMARK 2. Since the scalar product (u, v)wsp, M, v E Q‘l 1(F)’ does not
depend on a marking of X = I'\H, the metric (, )cusp and its symplectic form
Oy ATE defined on the moduli space ollg n of Riemann surfaces of type

(g, n), n > 0. In general, the closed (1, 1)forms w,, p and Woysp O "?lg n
represent nontrivial linearly independent cohomology classes [w, ], [w

€ H? (%,  ;IR). Forinstance, when g> 3, n= 1, by Theorem 2 we have
g.n

]le
cusp

1 1

122 [w wp]—_ [w

cuspl = Pr(e (g )) #0

in Hz(dllg 15 R,
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where )\H is the Hodge line bundle on @lg (see [13)]), cl()\H) EHZ(%g; Z)
is its Chern class and pr: %g s %g is the natural projection map (“forgetting
Wy p and Weygp OVEr fibers of pr:
— 0Zlg (i.e. compact Riemann surface of genus g) are positive, so both

] are not proportional to pr*(cl()\H )). This proves their

of punctures”). Integrals of the forms
%g,l
[wWP] and [wwsp
non-triviality as well as linear independence. Besides, [w,] and '[w

]
cusp
form a basis of Hz(gllg 1+ R), because dim Hz(@lg U R) =2 (see[14)).
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